ECE Final Year Project 2022-2023

Microfabrication of Radio Frequency Filter Chips

Tsz Fung HO (20585446)

Ū

Supervisor: Yansong YANG

The Hong Kong University of Science and Technology

Background, Methodology and Objectives

PROJECT INTRODUCTION

Radio Frequency (RF) Chips

- Fundamental element in modern communication technology.
- Can also be used in medical, military, power systems, and more.
- Performance limited by fabrication technologies.

Piezoelectric Micromachined Ultrasonic Transducer (PMUT)

A Comparison Between Traditionally Micromachined PMUTs

Silicon Migration Technology (SiMiT)

- a) Create dense and narrow well arrays;
- b) Silicon atoms start to diffuse upon high temperature;
- c) At the end achieves self-sealing.

A promising solution to existing issues

Objective 1

PROCESS PLANNING, DESIGN, AND VERIFICATION

Nano/Microfabrication

Thin Film Formation

Photolithography

Etching

Photo: Courtesy of Nanosystem Fabrication Facility(CWB), HKUST

From Structural Design to Process Flow

We derived the process flow by reversely look up each layer of this given design.

Ū_______

Equipment Matching

Wafer Cleanliness	Step	Equipment	Location	Cleanliness	Process	Requirement
Clean	1.1	B1: Sulfuric Cleaning	P201000	Clean	Initial Clean	
Clean	1.2	B2:HF:H20(1:50)	P201000	Clean	Oxide clean	
Clean	1.3	SRD-B	P201000	Clean	Sample Dry	
Clean	1.4	Oven-C(120C)	P200100	Clean/Semi-Clean	Dehydrating bake	120C 10mins
Clean	1.5	SVG88 Coater Track	P200100	Clean/Semi-Clean	PR Coating	AZ5214 2um /w HMDS
Clean	1.6	SVG88 Coater Track	P200100	Clean/Semi-Clean	Soft Bake	1min 110C
Clean	1.7	ASML Stepper	P200100	Clean/Semi-Clean	Photolithography	TBD
Clean	1.8	SVG88 Developer Track	P200100	Clean/Semi-Clean	Develop	w/o PEB and HB
Clean	1.9	PS210 Asher	P201000	Clean	Descum	TBD
Clean	1.10	DRIE Etcher #1	P201000	Clean	DRIE	TBD
Clean	1.11	PS210 Asher	P201000	Clean	PR Strip	TBD
Clean	1.12	E4:Resist Strip	P201000	Clean/Semi-Clean	PR Strip	
Clean	2.1	A3: Sulfuric Cleaning	P201000	Clean	Pre Anneal Clean	
Clean	2.2	A2:HF:H20 (1:50)	P201000	Clean	Pre Anneal Oxide Cle	an
Clean	2.3	SRD-A	P201000	Clean	Sample Dry	
Clean	2.4	RTP-600S	P201000	Clean	Anneal	TBD

Objective 2 SIMIT STRUCTURE FABRICATION

Well Array Formation

2

Stepper Photolithography

Deep Reactive-ion Etching

Well Array Formation

Fabricated Well Arrays

Well arrays are fabricated with a yield of about 40% per dieExposure is non uniform across arrays

Suspended Structure Formation

- Initialize Migration With Rapid Thermal Processing
- Temperature control is critical.

Ū

Completed SiMiT Structure

- The curvature indicates the diaphragm is fabricated suspended;
- Concave shaped due to pressure imbalance;
- Argon-filled cavity

Objective 3 PMUT STRUCTURE FABRICATION

ScAIN Layer Definition

- Deposition work done by external collaborators;
- Layer thickness 622nm;
- Used dry etching to preserve clear and sharp boundary;

Electrode Definition

- Platinum as bottom electrode.
- Aluminium as top electrode.

- Deposited with evaporating.
- Patterned with lift-off.

18

Conclusion

Proved feasible to make PMUT with SiMiT technique

- Greatly simplified PMUT fabrication process.
- Enables lower cost devices with higher performances.

Found rooms of improvement

- Enhance structural reliability
- Boost yield

Thank You!

Acknowledgment

The fabrication work of this project is supported by the Nanosystem Fabrication Facility(CWB).

